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Abstract 

This study examines the impact of parental illness on child health in rural Bangladesh. Using 

a set of health conditions that are as good as random, we find that parental illness has a 

significant negative effect on child height. Both Fathers’ and mothers’ illnesses exhibit equally 

detrimental effects. Exploring potential mechanisms, we find that parental illness induces 

financial distress, characterized by increased medical spending, diminished assets, and 

increased borrowing. Consequently, parents respond by substantially reducing resource 

allocation, manifested through decreased food intake and protein consumption. The findings 

of this study carry important policy implications, as mitigating the effects of parental illness 

could close 3.5% of the height gap between Bangladeshi children and the global average. 

(JEL D13, I12, I15, I25, J13, O12, O15) 
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1. Introduction 

Child health is a crucial component of human capital development, and poor health outcomes 

in childhood can have long-lasting effects on educational attainment, economic productivity, 

and overall well-being in adulthood (Almond, Currie, and Duque, 2018; Currie and Vogl, 

2013). In developing countries, where health infrastructure is weak and access to quality 

healthcare is often limited, child health is particularly vulnerable to various risk factors, 

including parental illness. Understanding the impact of parental illness on child health is crucial 

for informing policies and interventions aimed at improving child health outcomes in this 

population. However, evidence on the causal effect of parental illness on child health in a low-

income context is scarce. 

Parental illness could be financially costly because of increased medical spending and 

decreased labor supply and productivity. This may force parents to lower resource allocation 

toward children, e.g., by reducing food and medical expenditures. Parental illness may also 

affect children’s health through living in a stressful environment (Mühlenweg, Westermaier, 

and Morefield, 2016). Medical research indicates that early life stress leads to stunting due to 

activation of the hypothalamic-pituitary-adrenal (HPA) axis and inhibition of pituitary growth 

hormone (GH) release (Denholm, Power, and Li, 2013; Li, Manor, and Power, 2004).  

In this study, we measure how parental illness affects child health in Bangladesh. Specifically, 

we investigate the impact of major illnesses of parents on under-five children’s height. Child 

malnutrition and stunting are major concerns for Bangladesh, where 28% of children under 

five were two standard deviations below the World Health Organization (WHO) growth 

standards in 2019 (World Bank, 2022). Improving child nutrition and growth can significantly 

improve child survival, cognitive development, and future earnings (Almond, Currie, and 

Duque, 2018; Currie and Vogl, 2013). 

The treatment variable in this study is major parental (i.e., father or mother, or both) illness, 

defined as the limitation in activities of daily living (ADLs). More specifically, we created an 

indicator variable “ADL limitation” if parents have at least some difficulties in walking, sitting, 

or carrying weight.1 ADL limitation is a reliable indicator of long-term health status and reflects 

 
1 Although it would be ideal to know the specific cause of ADL limitation, it is not possible to distinguish specific 

health events as the underlying dataset lacks information on specific illnesses. However, a nationally 

representative survey indicates that falls, cuts, road traffic injuries, blunt object injuries, burns, and animal injuries 

collectively contribute to approximately 85% of all injury morbidities in Bangladesh leading to ADL limitation 

(Rahman et al., 2016). 
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unpredictable major illnesses (Crespo and Mira, 2014; Genoni, 2012; Gertler and Gruber, 

2002). We started with a pool of healthy parents (i.e., no ADL limitation) at the baseline in 

2012.2 Parents who developed ADL limitations between 2013 and 2015 form the treatment 

group, and parents who remained healthy formed the control group.  

We measured child height based on the WHO growth standard height-for-age (HFA) z-score. 

HFA z-score quantifies how under-five children should grow under optimum conditions with 

ideal infant feeding and child health practices. In addition, HFA z-score does not considerably 

respond to recent dietary intake and therefore reflects long-term nutrition deficiency in a 

population.   

A key finding motivating our identification strategy is that, at the baseline, the distribution of 

child height is not statistically different between treated and control groups. We also show that 

the baseline covariates between the treatment and control groups are quite similar. Moreover, 

we find no significant difference in the likelihood of other household members developing an 

ADL limitation between treatment and control groups in 2015, which indicates that there are 

no household level confounders (i.e., treated households are not living in conditions that are 

more susceptible to injury and illness). Furthermore, we show that the development of ADL 

limitation is uncorrelated with the pre-treatment health conditions such as acute and chronic 

conditions. As a result, for a confounder to cause bias in our estimates, it would need to be 

something (i) unobserved, (ii) specific to only one household member, and (iii) which does not 

affect children’s height until after the ADL limitation is realized. It is hard to imagine what 

such a confounder might be.  

This finding suggests that the treatment assignment (i.e., parental illness shocks) is minimally 

confounded or as good as random. However, to help address any remaining endogeneity 

concern, we control for pre-treatment family characteristics and child health outcome using 

doubly robust estimation (Bang and Robins, 2005; Imbens and Wooldridge, 2009; Wooldridge, 

2007, 2010). We obtain very similar results using ordinary least squared (OLS) with and 

without covariates, or using a doubly robust estimator.  

The result shows that parental illness reduced child height by 22% of a standard deviation.3 

This effect size is comparable to children experiencing relatively large shocks, e.g., crop failure 

 
2 This study uses nationally representative panel data from rural Bangladesh – the Bangladesh Integrated 

Household Survey (BIHS). Households from 325 randomly selected villages were surveyed in 2011-12 and 

followed up in 2015. 
3 This result is robust to alternative definition of parental illness shocks.  
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(0.17 SDs) and drought (0.21 SDs) in Ethiopia (Akresh, Verwimp, and Bundervoet, 2011; 

Hirvonen, Sohnesen, and Bundervoet, 2020). A back-of-the-envelope calculation shows that 

removing the effects of parental illness would close 3.5% of the gap in height between 

Bangladeshi children and the global average. We find fathers’ and mothers’ illnesses have 

equally detrimental effects on child height. In addition, we find no heterogeneous effects by 

child age, gender, or birth order. 

Next, we turn to understanding the mechanism. The first channel we consider is parental 

resource allocation. Existing empirical evidence highlights the crucial role of within-household 

resource allocation in determining child height (Jayachandran and Pande, 2017; Rosenzweig 

and Schultz, 1982). Parental illness could cause financial distress due to decreased labor supply 

and productivity and increased medical spending (Alam, 2015; Gertler and Gruber, 2002; 

Schultz and Tansel, 1997). In our data, we find that parental illness significantly reduced time 

allocation for both domestic work and outside work, increased medical spending, decreased 

assets, and increased borrowing. Furthermore, we find that parental illness significantly 

increased food insecurity, decreased food intake, and reduced protein consumption.  

This study makes two major contributions. First, it contributes to the literature on human capital 

accumulation by demonstrating that parental illness can cause significant loss in children’s 

health, implying lower cognitive development and lower future earnings (Almond, Currie, and 

Duque, 2018; Currie and Vogl, 2013). Second, it contributes to the literature on adverse shocks 

and child health in a low-income context. Despite the prevalence of parental illnesses in 

developing countries, this is one of the first studies to estimate the causal effect of parental 

illness on child health in this population. 

The rest of the paper is structured as follows. Section 2 provides the context of the study. 

Section 3 describes the data and method. Section 4 presents the main estimation result, 

robustness check, heterogeneity analysis, and mechanisms of the effect. Section 5 presents the 

result for another health outcome and Section 6 concludes the paper. 

2. Context of the Study 

2.1 Child Health 

The World Health Organization (WHO) identifies malnutrition as the single greatest threat to 

the world’s public health (WHO, 2021). Globally, malnutrition is attributed to 45 % of all child 

deaths (WHO, 2020). Bangladesh is no exception to this trend. For example, as of 2019, more 
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than a quarter of all children in Bangladesh were stunted, i.e., two standard deviations below 

the WHO growth standard (World Bank, 2022). In addition, Bangladeshi children under the 

age of five also suffer from high rates of micronutrient deficiencies: vitamin A (21%), iron 

(51%), and zinc (45%) (“Global Nutrition Report 2021”, 2022).  

Child malnutrition is present in all geographic regions and economic groups in Bangladesh. 

However, children living in rural areas are more likely to be stunted (28.4%), compared to their 

counterparts in urban areas (26.3%). Similarly, stunting is more prevalent among the lowest 

wealth quintile (38%) as compared to the highest wealth quintile (20%). However, stunting is 

equally prevalent among male and female children – 28% and 27.9%, respectively (“Global 

Nutrition Report 2021”, 2022). 

Insufficient food intake, unhealthy diet patterns, and imbalances in nutrition intake are common 

reasons for high child malnutrition and stunting in Bangladesh. Around 35% of the population 

lacks food security in Bangladesh (NIPORT and icddr,b, 2021). Moreover, the tendency to 

consume cereals or staples (70% of total food intake) paired with an inadequate intake of 

protein and micronutrients is commonly responsible for reduced dietary diversity (Magnani et 

al., 2015). Food insecurity and poor dietary diversity in the early stage of children’s life – the 

first 1000 days of a child’s life starting from pregnancy to the second birthday – have severe 

consequences as they substantially affect the survival, physical growth, cognitive development, 

and productivity in the later life (Currie and Vogl, 2013). 

2.2 Illness Shocks 

Illness shocks are one of the leading economic shocks in Bangladesh, as more than 25% of 

households face an illness shock in a year (Hossain et al., 2019; Islam and Maitra, 2012). About 

24.6% of households spend more than 10% of their budget on healthcare (Ahmed et al., 2022). 

Major types of illness shocks are accidents such as severe cuts or burns (43%), bone fractures 

(21%), major operation/surgery (25%), and non-communicable diseases (8%) (Hossain et al., 

2019).  

Health insurance is virtually nonexistent in Bangladesh. As a result, out-of-pocket payments 

are the primary way to finance healthcare in Bangladesh. About 16% of ill-health individuals 

abstain from seeking health care because they cannot afford the treatment cost (BBS, 2011). 
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Those seeking healthcare are often forced to finance treatment expenses through borrowing 

and selling assets (Islam and Maitra, 2012).  

Out-of-pocket healthcare payments cause a financial burden to households. Around 4.50% of 

the population (8.61 million) was pushed below the national poverty line from out-of-pocket 

healthcare payments in 2016 (Ahmed et al., 2022). Hamid, Ahsan, and Begum (2014) show 

that illness shocks drive 17% of households into poverty in rural Bangladesh annually. 

Therefore, protecting households from illness shocks has important implications for reducing 

poverty, human capital accumulation, and economic growth in Bangladesh. 

3. Data and Method  

3.1 Data 

This study uses nationally representative panel data from rural Bangladesh – the Bangladesh 

Integrated Household Survey (BIHS) completed by the International Food Policy Research 

Institute (IFPRI). A total of 5,600 households from 325 randomly selected villages were 

surveyed in 2011-12 and followed up in 2015. Most households are followed in both rounds as 

the attrition rate is only 1.26% per year (IFPRI, 2016). The survey provides detailed 

information on household demographics and economic status, including income, expenditure, 

savings, assets, and borrowings. It also contains household members’ information, including 

nutrition intake, anthropometric measurements, health status, healthcare-seeking behavior, and 

healthcare expenditures.  

The treatment variable in this study is the parental (i.e., father or mother, or both) illness, which 

is defined as the limitation in activities of daily living (ADLs). Limitation in ADLs is a reliable 

indicator of long-term health status and reflects major unanticipated illnesses that may cause 

severe hardships to a household (Genoni, 2012; Gertler and Gruber, 2002; Crespo and Mira, 

2014).4 In addition, empirical studies suggest that ADL limitation is a better indicator of illness 

than other self-reported indicators such as assessments of general health status and morbidities 

(Genoni, 2012; Gertler and Gruber, 2002). This is because ADL limitation questions are more 

specific and objective and, as a result, are less prone to measurement errors.5 

 
4 We empirically investigate whether ADL limitation is difficult to predict in Section 4.2. We also empirically 

investigate whether ADL limitation causes financial hardship in Section 4.3.       
5 Health literature suggests that reporting of ADL limitation is less prone to measurement errors, given the 

specificity and objectivity of the questions, such as assessing the ability to walk, sit or lift weight. 



7 

 

The surveys collect data on three ADL indicators: the extent to which one cannot walk, sit, or 

carry weight. The data is collected on a Likert scale to measure any difficulty in performing a 

task: 1 equals the person can perform the task easily, 2 equals the person can perform the task 

with some difficulty, 3 equals the person can perform the task with a lot of difficulties, and 4 

equals the person cannot perform the task at all. Based on the responses, I create a treatment 

indicator that equals 1 if parents (i.e., father, mother, or both) have at least some difficulties in 

walking, sitting, or carrying weight (i.e., responded greater than one in any of the ADL 

indicators) and equals 0 if parents have no issue in performing those tasks.6  

The baseline sample consists of all healthy parents (i.e., no ADL limitations) in 2011-12.7 The 

treatment group consists of parents who developed ADL limitations between 2013 and 2015, 

and the control group consists of parents who remained healthy.8 About 25.3% of the children 

in our sample are in the treatment group, and 74.7% are in the control group. Although it would 

be ideal to know the specific cause of ADL limitation, it is not possible to distinguish specific 

health events as the underlying dataset lacks information on specific illnesses. However, a 

nationally representative survey indicates that falls, cuts, road traffic injuries, blunt object 

injuries, burns, and animal injuries collectively contribute to approximately 85% of all injury 

morbidities in Bangladesh leading to ADL limitation (Rahman et al., 2016).  

The primary outcome of interest in this study is child height. Child height has proven to be an 

informative measure of long-run nutritional status (Waterlow et al., 1977; Leonard, 1988). 

Height at a particular age reflects the history of net nutrition – the difference between the food 

intake needed to sustain growth and disease and other claims on the diet. In addition, child 

height is strongly predictive of cognitive ability (Case and Paxson, 2008), educational 

 
6 I check the sensitivity of my results using alternative treatment definitions – low ADL limitation and high ADL 

limitation – in Section 4.1. Low ADL limitation equals 1 if parents only have some difficulties in walking, sitting, 

or carrying weight (i.e., responded two in any of the ADL indicators) and equals 0 if parents have no issue in 

performing those tasks. And high ADL limitation equals 1 if parents have a lot of difficulty or cannot do the tasks 

(i.e., responded greater than two in any of the ADL indicators) and equals 0 if parents have no issue in performing 

those tasks. 
7 That is, all parents (including would-be parents in 2015) with ADL limitations are dropped from the baseline 

sample. 
8 We excluded the 2018 survey round due to estimation challenges arising from the utilization of three rounds of 

data. The possibility of treated parents transitioning to a healthy state and new parents developing ADL limitation 

in 2018 introduces the issue of treatment switching on and off. Furthermore, combining early treatment (2013-

2015) and late treatment (2016-2018) groups may introduce treatment heterogeneity, leading to negative weighing 

problems as discussed in recent Difference-in-Differences (DiD) literature. Additionally, given our focus on the 

health outcomes of children under the age of 5, the natural aging process over the 7-year span between 2012 and 

2018 would result in different sets of parents and children, introducing further complexities in the analysis. 
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attainment (Currie, 2009), occupational choice (Case, Paxson, and Islam, 2009), and labor 

market outcomes (Persico, Postlewaite, and Silverman, 2004).  

We measure child height using the WHO growth standard height-for-age (HFA) z-score. HFA 

z-score measures how children should grow under optimum conditions and with optimum 

infant feeding and child health practices. HFA z-score is a widely used health indicator for 

children between 0 and 5 years (Jayachandran and Pande, 2017; Hirvonen, Sohnesen, and 

Bundervoet, 2020).9 

In an ideal growth environment, the child height-for-age (HFA) z-score should have a normal 

distribution centering the mean at zero. However, in most developing countries, children grow 

up in a sub-optimal environment, and the median of the height distribution is often well below 

zero. In our data, the baseline average child HFA z-score is -1.43, which suggests that an 

average child in Bangladesh is 1.43 standard deviations (SDs) shorter than what they would 

have if they were living in an ideal growth environment.10  

The covariates we include are pretreatment child height-for-age z-score, household 

characteristics (i.e., family size, income, asset, loan, non-health shocks such as crop failure, 

and other members with ADL limitations), and household head’s characteristics (i.e., age, 

gender, education, and occupation). Following the suggestion of Imbens and Wooldridge 

(2009), we use a normalized difference of covariates between the treatment and control 

groups.11 Since normalized difference compares the difference in means in units of the pooled 

standard division, it is not influenced by the sample size and allows for assessment of the 

balance of the covariates measured in different units (Imbens and Rubin, 2015; Imbens and 

Wooldridge, 2009). 

Imbens & Rubin (2015) suggest as a rule of thumb that a normalized difference greater than 

one quarter makes linear regression methods sensitive to the specification. LaLonde (1986) 

shows that if the normalized difference exceeds one for several covariates, regression models 

are unlikely to produce credible results. Column (3) of Table 1 shows that none of the 

covariates have a normalized difference greater than 0.16. This suggests that the baseline 

 
9 Anthropometric measurements, such as child height, taken by trained field workers are less prone to 

measurement error compared to relying on mothers’ self-reported data.  
10 Similarly, child height-for-age (HFA) z-score in 2015 is -1.40.   
11 Normalized Difference = (�̅�𝑇𝑟𝑒𝑎𝑡𝑒𝑑 − �̅�𝐶𝑜𝑛𝑡𝑟𝑜𝑙) √(𝑠𝑇𝑟𝑒𝑎𝑡𝑒𝑑

2 + 𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙
2 )⁄  where �̅� is the sample mean and 𝑠2 

is the sample variance of covariates. On the other hand, 𝑡 − statistic =

(�̅�𝑇𝑟𝑒𝑎𝑡𝑒𝑑 − �̅�𝐶𝑜𝑛𝑡𝑟𝑜𝑙) √(𝑠𝑇𝑟𝑒𝑎𝑡𝑒𝑑
2 𝑁𝑇𝑟𝑒𝑎𝑡𝑒𝑑⁄ + 𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙

2 𝑁𝐶𝑜𝑛𝑡𝑟𝑜𝑙⁄ )⁄ .  
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covariates between treated and control groups are quite similar. The pre-treatment average 

HFA z-scores for treatment and control groups children are -1.46 and -1.37, respectively. The 

normalized difference in child height is only 0.06.12 As a result, the data suggests that child 

height between the treated and the control group is balanced at the baseline.  

Table 1: Baseline Covariate Balance 

 
Control Treated 

Normalized 

Difference 

(1) (2) (3) 

Pre-treatment Outcome Variable    

    Height-for-age Z-score -1.457 -1.372 0.056 

 (0.077) (0.125)  

Pre-treatment Household Head’s Characteristics    

    Head’s Age 39.989 39.25 -0.052 

 (14.556) (13.967)  

    Head Female (=1 if yes) 0.111 0.107 -0.013 

 (0.314) (0.309)  

    Head Literate (=1 if yes) 0.546 0.523 0.047 

 (0.498) (0.500)  

    Head Wage-earner (=1 if yes) 0.163 0.132 -0.088 

 (0.370) (0.339)  

    Head Self-employed (=1 if yes) 0.704 0.757 0.119 

 (0.457) (0.429)  

Pre-treatment Household Characteristics    

    Log (Family Size) 1.438 1.496 0.157 

 (0.365) (0.374)  

    Log (Income/Capita) 8.906 8.872 -0.014 

 (2.373) (2.273)  

    Log (Asset/Capita)  8.580 8.534 -0.035 

 (1.357) (1.298)  

    Have Loan (=1 if yes) 0.207 0.264 0.134 

 (0.405) (0.441)  

    Non-health Shocks (=1 if yes) 0.115 0.125 0.032 

 (0.319) (0.331)  

    Other Members’ ADL limitation (=1 if yes) 0.338 0.289 -0.107 

 (0.473) (0.454)  

Number of Observations 1,300 440 1,740 
Notes: (a) This table shows the baseline covariate balance between the treated (i.e., parental illness) and 

the control (i.e., no parental illness) groups. (b) Standard deviations are in parentheses. (c) Column (3) 

shows the normalized mean difference. 

 

 
12 The sample mean difference test shows that the difference is not statistically significant (t-stat = -0.58). 

Bootstrapping the sample 1000 times to address small sample issue does not change the conclusion (t-stat = -

0.58). We also conduct a nonparametric test of equality of the distribution of child height using Kolmogorov-

Smirnov (K-S) test . The K-S test fails to reject the equality of the distributions of child height-for-age z-score for 

treated and control groups (p-value = 0.61).  
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3.2 Method  

The identification strategy is driven by the key finding that the distribution of pre-treatment 

child height is not statistically different between treated and control groups. In addition, the 

pre-treatment covariates are balanced between the treatment and control groups. We can 

estimate the treatment effect using an ordinary least squared regression with lagged outcome 

and covariates.13 The regression equation is as follows:  

 𝑌𝑖,𝜏 = 𝛽0 + 𝛽1𝐷𝑖,𝜏 + 𝑋𝑖,𝜏−1 
′ 𝜌 + 𝐶𝑖,𝜏 

′ 𝛼 + 𝛾𝑌𝑖,𝜏−1 + 𝜖𝑖,𝜏 

 

(1). 

In Eq (1), 𝑌𝑖,𝜏 represents the outcome variable for child 𝑖 in survey round 𝜏, where 𝜏 corresponds 

to the post-treatment survey round in 2015 and 𝜏 − 1 corresponds to the pre-treatment survey 

round in 2011-12. The primary outcome variable of interest is child HFA z-score. The 

treatment variable 𝐷𝑖,𝜏 is a binary indicator, taking the value of one if child 𝑖’s parents have an 

ADL limitation at time 𝜏, and zero otherwise. The coefficient 𝛽1 captures the treatment effect. 

The vector 𝑋𝑖,𝜏−1 comprises pre-treatment covariates, encompassing household and household 

head’s characteristics (see Table 1 for details). In addition, 𝐶𝑖,𝜏 is a vector of post-treatment 

child characteristics such as age, gender, and birth order. 𝑌𝑖,𝜏−1 denotes the pre-treatment 

outcome variable for child 𝑖 at time 𝜏 − 1. The error term 𝜖 accounts for the unobserved factors. 

Standard errors are clustered at the household level as treatment assignment is at that level and 

some households have more than one child. Furthermore, to address small sample issues, 

standard errors are bootstrapped with 1,000 replications.   

In Eq (1) the identification of treatment effect relies on the assumption that treatment 

assignment is as good as random. If parents can accurately predict the likelihood of developing 

an ADL limitation, this assumption is violated. Moreover, if parents can take effective 

measures (i.e., coping strategies) against a predictable illness, the observed treatment effect 

may underestimate the actual effect of parental illness. To investigate this, we examine whether 

parents can use information about their past health conditions – acute or chronic – to predict 

the likelihood of developing an ADL limitation.14 The estimation equation for this exercise is 

as follows:  

 
13 Assuming that, conditional on the pre-treatment outcome and covariates, both groups would exhibit identical 

expected outcomes in the absence of treatment. 
14 Acute condition is an episode of illness that lasts less than a month, and include health conditions such diarrhea, 

fever, injury, pain, headache, malaria, pneumonia, and typhoid. On the other hand, chronic condition is an episode 

of illness that lasts more than months and include health conditions such as heart disease, gastric ulcer, asthma 

(respiratory disease), diabetic, cancer, and epilepsy.  
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 𝐷𝑝,𝜏 = 𝛿0 + 𝛿1𝑍𝑝,𝜏−1 + 𝑋𝑖,𝜏−1 
′ 𝜂 + 휀𝑝,𝜏 (2) 

This exercise uses the parents’ (𝑝) acute or chronic conditions (𝑍) at time 𝜏 − 1 as treatment 

variables and parents’ ADL limitation (𝐷) at time 𝜏 as an outcome variable. Both acute and 

chronic condition variables are dummy indicators that equal one if parents have a condition at 

the time 𝜏, and zero otherwise. Similarly, the outcome variable (𝐷) is a dummy indicator that 

equals one if parents have ADL limitation at time 𝜏, and zero otherwise. 𝑋𝑖,𝜏−1 is the same 

vector of pretreatment covariates as before capturing household and household head’s 

characteristics. Appendix Table A1 shows that having acute or chronic conditions in the pre-

treatment period does not predict the likelihood of developing ADL limitation. This result 

suggests that the parents’ ADL limitation represents an illness shock that is difficult to predict 

based on past health conditions.15 

Moreover, treatment assignment is not as good as random if there exist household-level 

confounders (i.e., treated households live in conditions that are more susceptible to injury and 

illness). To assess the presence of household-level confounders, we investigate the presence of 

ADL limitations among other household members in treated households. The regression 

estimation equation for this analysis is as follows: 

 𝐷𝑜,𝜏 = 𝜆0 + 𝜆1𝐷𝑝,𝜏 + 𝜈𝜏 (3). 

In this exercise, we use parents’ ADL limitation at time 𝜏 (𝐷𝑝) as a treatment variable and other 

household members’ ADL limitation in the same period (𝐷𝑜) as an outcome variable. Both 

parents’ and other household members’ ADL limitations are dummy indicators, equaling one 

if they have an  ADL limitation and zero otherwise. The results indicate that parent’s ADL 

limitation have no significant effect on other household members’ having ADL limitations 

(𝜆1 = 0.033, 𝑠𝑒𝜆1
= 0.029). Consequently, we argue that treated households are not living in 

conditions more susceptible to injury and illness.  

So far, we have presented three lines of evidence supporting the assertion that treatment 

assignment (i.e., parents’ ADL limitation) is as good as random: (i) balance in outcome and 

covariates in the pre-treatment period, (ii) the unpredictability of ADL limitation, (iii) the 

absence of household-level confounders. To introduce bias in our estimates of Eq (1), a 

 
15 This finding aligns with nationally representative survey statistics, which indicate that the majority of the injury-

related morbidities result from unforeseeable accidents such as falls, cuts, road traffic injuries, blunt object 

injuries, burns, and animal injuries (Rahman et al., 2016). 
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confounder must be (i) unobserved, (ii) specific to only one household member, and (iii) does 

not affect children’s height until after the ADL limitation is realized. It is difficult to imagine 

what such a confounder might be.     

To address any remaining endogeneity concerns, we use doubly robust estimation (Bang and 

Robins, 2005; Imbens and Wooldridge, 2009; Wooldridge, 2007, 2010). This approach, based 

on a selection on observable approach, minimizes bias arising from misspecification by 

modeling both the outcome and the treatment equations. Importantly, it only requires correct 

specification in one of the two models to obtain an unbiased effect estimator. Consequently, it 

provides two opportunities to obtain unbiased estimates when addressing selection issues 

(Imbens and Wooldridge, 2009; Wooldridge, 2007, 2010). The doubly robust method offers 

advantages over OLS, including increased robustness to model misspecification and reduced 

sensitivity to functional form assumptions. 

We use a doubly robust estimator known as the inverse-probability weighted regression 

adjustment (IPWRA) (Imbens and Wooldridge, 2009; Wooldridge, 2007, 2010). IPWRA 

combines an “inverse-probability weighted (IPW)” estimator with a “regression adjustment 

(RA)” estimator, effectively modeling both the treatment and outcome. The IPW estimator 

models the probability of treatment without any assumptions about the functional form of the 

outcome model. Conversely, the RA estimator models the outcome without any assumptions 

about the functional form of the probability of the treatment model.16 In this study, we follow 

a three-step procedure to implement the IPWRA estimator, a methodology also employed in 

several recent empirical studies (for example, see Chhay and Yamazaki, 2021; Tani, Xu, and 

Zhu, 2021). 

Firstly, we estimate the probability of parental illness (i.e., the treatment model) using a logistic 

regression model. The predicted probabilities, known as propensity scores, are then utilized to 

compute the inverse probability weights. The covariates included in the logit model are the 

same as those in Eq (1), excluding child characteristics.  

Secondly, leveraging the inverse-probability weights, we fit weighted regression models of 

child height (i.e., outcome models) for both treatment and control groups to obtain treatment-

specific predicted outcomes for each child. The outcome model includes all covariates from 

Eq (1). It is important to note that if the regression function is correctly specified, the weights 

 
16 See Appendix B for detail of the IPWRA estimator. 



13 

 

do not affect the consistency of the estimator. However, since the true functional form is rarely 

known, weighting can help reduce bias (Imbens and Wooldridge, 2009; Tani, Xu, and Zhu, 

2021). 

Finally, we compute the means of the predicted outcomes for both treatment and control 

groups. The mean difference between the treatment and control groups provides estimates of 

the average treatment effect (ATE) of parental illness. Similarly, we obtain the average 

treatment effect on the treated (ATT) by restricting the computation of the means of the 

predicted outcomes to the subset of treated children. ATT estimates are consistent if the models 

for either the treatment (step 1) or the outcome (step 2) are correctly specified (Imbens and 

Wooldridge, 2009; Wooldridge, 2007, 2010).   

4. Results  

4.1 Main Result 

This section presents the main estimation result based on Eq (1). Table 2 presents the estimates 

of parental illness on child height-for-age (HFA) z-score. Columns (1)-(4) present the OLS 

estimates with and without the covariates, whereas Column (5) presents IPWRA estimates. The 

treatment effect in Column (1) is -0.22, and statistically significant at the 1% level. Parental 

illness led to a decrease in child height by 22% of a standard deviation. This point estimate is 

robust to the inclusion of additional control variables, as shown by the statistically identical 

coefficients in Column (2)-(4). This finding suggests that the treatment effect is not sensitive 

to observable covariates, corroborating the claim that parental illness is as good as random, and 

endogeneity concerns from unobservable confounders are negligible.17  

The IPWRA estimate in Column (5) is also similar to the OLS estimates, and statistically 

significant at the 5% level. The IPWRA estimate shows that parental illness led to a 17.2% of 

a standard deviation lower child height. The overall result suggests that parental illness have a 

large negative effect on child height and the effect size is comparable to relatively large shocks 

such as crop failure, drought, and civil war.18 A back-of-the-envelope calculation shows that 

 
17 Since the observed covariates do not significantly attenuate the point estimate, it is unlikely that any unobserved 

confounder will substantially attenuate the treatment effect. 
18 Akresh, Verwimp, and Bundervoet (2011) find a similar magnitude of negative effect for children in Rwanda 

born during a crop failure and children living during a civil war, 0.173 standard deviations and 0.234 standard 

deviations, respectively. Similarly, Hirvonen et al., (2020) find a 0.21 lower height for exposure to drought in 

Ethiopia. 
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removing the effects of parental illness would close 3.5% of the gap in height between 

Bangladeshi children and the global average.19  

Table 2: Effect of Parental Illness on Child Height 

 (1) (2) (3) (4) (5) 
Parental Illness (=1 if yes) -0.220*** -0.178** -0.175** -0.170** -0.177** 
 (0.082) (0.078) (0.074) (0.074) (0.073) 

Control: Pre-treatment Covariates No Yes Yes Yes Yes 

Control: Child Characteristics No No Yes Yes Yes 

Control: Pre-treatment Outcome No No No Yes Yes 
Estimation Approach OLS OLS OLS OLS IPWRA 

Observations 1,740 1,740 1,740 1,740 1,740 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on Ordinary Least Squares 

(OLS) and Inverse-probability-weighted Regression Adjustment (IPWRA). (b) The treatment variable is the 

parental illness that equals one if parents have any ADL limitation, and zero otherwise. (c) The outcome 

variable is the children’s height-for-age z-score. (d) Pre-treatment covariates are household head’s age, head 

is female, head is literate, head is wage-earner, head is self-employed, family size (in log scale), income per 

capita, asset per capita, have a loan, household faced a non-health shock, other members have ADL limitations. 

Contemporaneous child characteristics include child’s age, gender, and birth order. Pre-treatment outcome 

variable is child height-for-age z-score measured at the baseline. (e) Bootstrapped (1000 replications) standard 

errors are clustered at the household level and presented in parentheses. (f) Significance: ***p<0.01, **p<0.05, 

*p<0.1. 
 

We assess the robustness of our primary results by examining alternative definitions of the 

treatment variable – low and high ADL limitations. The low ADL limitation indicates that 

parents have some difficulty performing ADL activities, whereas the high ADL limitation 

indicates that parents have a lot of difficulties or cannot perform ADL activities. The results 

presented in Appendix Table A2 show that increased ADL limitation corresponds to a more 

pronounced decline in child height. Notably, these estimates are not statistically significantly 

different from our main estimates.   

4.2 Heterogeneity 

In this subsection, we explore the heterogeneity of treatment effects by characteristics of 

parents and children. First, we investigate how treatment effects vary by illness shocks to 

fathers and mothers.20 Then, we examine whether the effect of parental illness varies with a 

child’s age, gender, and birth order. Studies have highlighted the presence of differential 

parental investments and height outcomes based on various child characteristics (Barcellos, 

Carvalho, and Lleras-Muney, 2014; Jayachandran and Pande, 2017). 

 
19 This number is computed by multiplying the treatment effect by the fraction of children who are treated and 

dividing it by the average HFA z-score of Bangladeshi children. 
20 Studies show that illnesses of father and mother have a differential effect on children’s educational outcomes 

(Alam, 2015). 
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4.2.1 Heterogeneity by Illness of Father and Mother 

Table 3 investigates whether illnesses of fathers and mothers have differential effects on child 

height.21 Panel A and Panel B present the ATT estimates of fathers’ and mothers’ illnesses on 

child height, respectively. The estimates in Column (3) show that father’s illness reduced child 

height by 12% of a standard deviation, while mother’s illness led to an 18% reduction. 

Although the treatment effect for father’s illness is not statistically significant, the effect size 

for father’s illness is not statistically different from the mother’s illness.22 This result suggests 

that fathers’ and mothers’ illnesses have equally detrimental effects on child height.  

Table 3: Heterogenous Effect of Father’s and Mother’s Illness 

 (1) (2) (3) 

Panel A: Father Only    

Father’s Illness (=1 if yes) -0.234 -0.122 -0.127 

 (0.178) (0.174) (0.174) 

Control No Yes Yes 
Estimation Approach OLS OLS IPWRA 
Observations 1,214 1,214 1,214 

Panel B: Mother Only     

Mother’s Illness (=1 if yes) -0.140 -0.179** -0.181** 

 (0.089) (0.080) (0.083) 

Control No Yes Yes 
Estimation Approach OLS OLS IPWRA 

Observations 1,697 1,697 1,697 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on 

Ordinary Least Squares (OLS) and Inverse-probability-weighted Regression Adjustment 

(IPWRA) methods. (b) The treatment variable in Panel A is the father’s illness that equals 

one if father has any ADL limitation, and zero otherwise. The treatment variable in Panel B 

is the mother’s illness that equals one if mother has any ADL limitation, and zero otherwise. 

(c) The outcome variable is the children’s height-for-age z-score. (d) Control variables are 

household head’s age, head is female, head is literate, head is wage-earner, head is self-

employed, family size (in log scale), income per capita, asset per capita, have a loan, 

household faced a non-health shock, other members have ADL limitations, and child’s age, 

gender, and birth order. Pre-treatment child height-for-age z-score is also included as a 

control. (e) Bootstrapped (1000 replications) standard errors are clustered at the household 

level and presented in parentheses. (f) Significance: ***p<0.01, **p<0.05, *p<0.1. 

 

4.2.2 Heterogeneity by Child Characteristics 

Moving forward, we explore whether the effect of parental illness varies with the age of the 

children, categorizing them into two groups: 0-24 months and 25-59 months. This 

categorization aligns with the WHO breastfeeding guidelines and the child growth phase. 

 
21 we conducted equality of distribution tests separately for only father’s illness and only mother’s illness. The  

Kolmogorov-Smirnov (K-S) tests fail to reject that the full distributions of HFA z-scores in the baseline are the 

identical. 
22 The overlapping confidence interval suggests that the point estimates are not significantly different from each 

other. 
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Appendix Table A3, Panel A and B, show the effect of parental illness on these age groups. 

The point estimates show parental illness has a similar effect on both age groups, suggesting 

that parental illness is equally detrimental to all children between 0 and 5 years of age. 

In Appendix Table A4, we investigate whether parental illness leads to differential height 

outcomes based on the child’s gender. Panels A and B show the estimates of parental illness 

for boys and girls, respectively. We find parental illness led to a  relatively larger height loss 

for boys. However, the ATT estimate for girls is not statistically different from boys.   

Finally, we explore how parental illness affects children of different birth orders in Appendix 

Table A5. Panels A-C present the estimates for first-born, second-born, and third-or-higher-

born children, respectively. The ATT estimates for different birth orders are not statistically 

different. This result suggests that later-born children, particularly third-or-higher-born 

children, do not experience a greater loss in height due to parental illness compared to first-

born and second-born children.  

4.3 Mechanisms 

In this section, we turn to understanding the mechanisms. We explore the viability of two 

channels: parental resource allocation and fertility choice. We briefly discuss these channels 

and examine their empirical support by re-estimating the main estimation equation with these 

proposed channels as outcome variables.  

4.3.1 Parental Resource Allocation 

The primary channel we explore is parental resource allocation. If parental illness induces 

financial hardship within the household, parents might adjust the allocation of resources, 

consequently affecting child height. Empirical studies underscore the pivotal role of within-

household resource allocation in determining child height (Jayachandran and Pande, 2017; 

Rosenzweig and Schultz, 1982). 

Parental illness can lead to financial distress through reduced labor supply and productivity, 

coupled with increased medical spending (Alam, 2015; Gertler and Gruber, 2002; Schultz and 

Tansel, 1997). Particularly in developing countries with less established credit markets and 

social protection systems, parents may resort to healthcare financing strategies like borrowing 

and selling productive assets. These strategies may alleviate immediate financial burdens but 

potentially reduce future earnings and intensify the financial challenges (Islam and Maitra, 
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2012). Understanding these mechanisms is crucial for devising targeted interventions that 

mitigate the adverse effects of parental illness on child height. 

In Table 4, we present the effect of parental illness on the household’s financial burden. The 

treatment variable is parental illness, and the outcome variables are productivity and financial 

constraint indicators in Panel A and B, respectively. Productivity is measured based on parents’ 

time allocation to domestic and outside work. In the survey, the time use data is only available 

for household head parents. Mothers’ time use is considered for domestic work, which includes 

activities such as sewing, cooking, and other housework. Father’s time use is considered for 

outside work, which includes activities such as farming and employment. The survey collects 

the amount of household income, medical spending, savings, assets, and loans over the past 12 

months.     

Table 4: Parental Illness and Financial Burden 

Outcome Variables 

Mean at the 

Baseline 

OLS Without 

Control 

OLS With 

Controls 
IPWRA 

(1) (2) (3) (4) 

Panel A: Productivity     

Domestic Work (Minutes/Day) 420.10 -18.414* -21.646* -22.591** 

  (11.058) (11.277) (11.511) 

Outside Work (Minutes/Day) 410.97 -53.879** -47.927** -47.726** 

  (23.602) (24.896) (24.157) 

Observations  1,074 1,074 1,074 

Panel B: Budget Constraint     

Log (Income/Capita) 9.39 0.031 0.031 0.037 

  (0.120) (0.117) (0.116) 

Log (Medical Spending/Capita)  6.43 0.180** 0.247*** 0.244*** 

  (0.082) (0.079) (0.083) 

Log (Savings/Capita)  6.99 -0.043 -0.024 -0.027 

  (0.215) (0.212) (0.211) 

Log (Asset/Capita)  8.57 -0.120 -0.101* -0.103* 

  (0.080) (0.061) (0.059) 

Log (Loans/Capita)  8.17 0.437* 0.428** 0.432* 

  (0.246) (0.228) (0.238) 

Observations  1,740 1,740 1,740 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on Ordinary Least Squares 

(OLS) and Inverse-probability-weighted Regression Adjustment (IPWRA) methods. (b) The treatment variable 

is the parental illness that equals one if parents have any ADL limitation, and zero otherwise. (c) Each cell of 

this table comes from a different regression estimation. (d) Productivity (i.e., domestic and outside work) data 

is available only for parents who are household head or spouse of the head. Domestic work includes mother’s 

time use in a day on cooking, sewing, and other housework. Outside work includes father’s time use in a day on 

farm work and employment. (e) All households reported positive income, medical spending, and asset amounts. 

For savings and loans, some households reported zero amounts. For zero value responses in savings and loans, 

I use natural log transformation assuming a small positive number (i.e., ln(x+1)) to avoid dropping observations. 

Using inverse hyperbolic sine transformation gives similar results. (f) Control variables are household head’s 

age, head is female, head is literate, head is wage-earner, head is self-employed, family size (in log scale), 

income per capita, asset per capita, have a loan, household faced a non-health shock, and other members have 
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ADL limitations. (g) Bootstrapped (1000 replications) standard errors are clustered at the household level and 

presented in parentheses. (h) Significance: ***p<0.01, **p<0.05, *p<0.1. 

 

The ATT estimates in Panel A of Table 4 show that parental illness reduced time allocation for 

both domestic work by 23 minutes per day and outside work by 48 minutes per day. The ATT 

estimates in Panel B show that parental illness led to a 24% higher medical spending per capita, 

a 10% lower assets per capita, and a 43% higher loans per capita. These findings underscore 

the substantial financial burden imposed by parental illness, stemming from reduced 

productivity, increased medical spending, and reliance on informal healthcare financing. 

Since parental illness causes a significant financial burden, we explore its potential effect on 

the quality and quantity of food intake within the household. Table 5 provides insights into two 

broad indicators: food insecurity (i.e., no food to eat at least for a meal in the past four weeks) 

and food intake index based on protein and carbohydrate consumption frequency in a week.23 

In Panel A, we observe that parental illness increased the likelihood of a household 

experiencing food insecurity by 4 percentage points, accompanied by a 9% of a standard 

deviation reduction in food intake. Analyzing individual components in Panel B, we find that 

parental illness significantly reduced protein consumption. Particularly, the frequency of egg 

consumption is reduced by 0.18 days a week, an 11% reduction from the weekly average of 

1.6 days. Similarly. meat consumption is reduced by 0.08 days a week, a 25% reduction from 

the weekly average of 0.32 days. However, carbohydrate (i.e., cereal, wheat, and potato) 

consumption remained unaffected by parental illness. Evidence from experimental studies 

highlights the crucial role of protein consumption as an important predictor of child height in 

Bangladesh (Dasgupta, 2016; Mahfuz et al., 2019). 

 

 

 

 

 

 
23 Food intake index is the first principal component of the protein and carbohydrate intake variables and 

normalized it to have zero mean and one standard deviation. 
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Table 5: Food Insecurity Mechanism of the Treatment Effect 

Outcome Variables 
Mean at the 

Baseline 

OLS 

Without 

Control 

OLS With 

Controls 
IPWRA 

 (1) (2) (3) (4) 

Panel A     

Food Insecurity (=1 yes) 0.079 0.049** 0.044** 0.044** 

  (0.021) (0.020) (0.020) 

Food Intake index  0.000 -0.112* -0.086 -0.086 

  (0.060) (0.056) (0.057) 

Observations  1,727 1,727 1,727 

Panel B: Individual Components     

Protein Eating Frequency/Week      

    Lentil/bean 1.136 -0.068 -0.068 -0.060 

  (0.115) (0.109) (0.110) 

    Eggs 1.601 -0.226* -0.188* -0.175 

  (0.117) (0.109) (0.117) 

    Dairy Products 2.075 -0.130 -0.054 -0.050 

  (0.189) (0.186) (0.196) 

    Meat (Beef or Goat) 0.322 -0.084** -0.081** -0.084** 

  (0.037) (0.039) (0.041) 

    Poultry (Chicken or Duck) 0.444 0.017 0.041 0.040 

  (0.063) (0.064) (0.062) 

Protein Intake Index  0.000 -0.109* -0.084 -0.081 

  (0.063) (0.056) (0.054) 

Carbohydrates Eating Frequency/Week      

    Cereal 0.153 -0.057 -0.041 -0.044 

  (0.087) (0.087) (0.091) 

    Wheat Flour 1.091 -0.107 -0.080 -0.097 

  (0.138) (0.134) (0.137) 

    Potato 5.209 -0.039 -0.055 -0.050 

  (0.104) (0.105) (0.105) 

Carbohydrate Intake Index  0.000 -0.029 -0.011 -0.018 

  (0.062) (0.064) (0.064) 

Observations  1,727 1,727 1,727 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on Ordinary Least Squares 

(OLS) and Inverse-probability-weighted Regression Adjustment (IPWRA) methods. (b) The treatment variable is 

the parental illness that equals one if parents have any ADL limitation, and zero otherwise. (c) Each cell of this table 

comes from a different regression estimation. (d) Food intake index is the first principal component of the protein 

and carbohydrate intake variables and normalized it to have zero mean and one standard deviation. Similarly, protein 

and carbohydrate indices are created with protein and carbohydrate intake variables, respectively. (e) Control 

variables are household head’s age, head is female, head is literate, head is wage-earner, head is self-employed, 

family size (in log scale), income per capita, asset per capita, have a loan, household faced a non-health shock, and 

other members have ADL limitations. (f) Bootstrapped (1000 replications) standard errors are clustered at the 

household level and presented in parentheses. (g) Significance: ***p<0.01, **p<0.05, *p<0.1. 
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Alongside the financial strain, parental illness might make parents physically impaired from 

making prenatal and postnatal healthcare investments such as antenatal doctor visits, 

breastfeeding, and vaccination. Besides, parental illness may affect child health by lowering 

the time spent with children.24 We examine the effect of parental illness on health inputs and 

childcare in Panel A and B of Appendix Table A6, respectively.25 However, we do not find 

evidence supporting a significant reduction in parental investment in child health inputs or a 

decrease in time spent with children due to parental illness.26 Consequently, these factors do 

not appear to explain the observed decline in child height associated with parental illness.  

4.3.2 Quality-Quantity Trade-off 

Extensive literature explores the trade-offs between child quantity and quality within 

households (S. E. Black, Devereux, and Salvanes, 2005; Millimet and Wang, 2011; Peters, 

Rees, and Hernández-Julián, 2014). If parents facing ADL limitations choose to have fewer 

children, their relatively small family size may lead to increased investment in children and 

improved child health outcomes. In Appendix Table A7, we investigate whether parental 

illness influences their fertility choices measured by the number of children.  

If parental illness prompted adjustments in fertility choices favoring existing children, we 

would expect a significant negative effect on the number of children. However, the ATT 

estimates show positive or statistically insignificant small negative effects, suggesting that 

parental illness did not influence fertility decisions. This aligns with the findings of Peters, 

Rees, and Hernández-Julián (2014) in rural Bangladesh, providing further support that, in this 

context, fertility choice adjustment does not seem to account for the observed decline in child 

height associated with parental illness. 

5. Other Health Outcome 

We have previously observed that parental illness causes households to reduce protein 

consumption without significantly affecting carbohydrate consumption. Such a dietary shift 

may sustain weight but could severely impede a child’s growth potential. Experimental studies 

 
24 Information on prenatal and postnatal inputs is only available for children under the age of 2 years, whereas 

parental time allocation is available for only household head parents. As a result, the number of observations in 

this analysis is smaller than the main estimation sample. 
25 We consider several health inputs such as whether a child is breastfed, total number of vaccinations, delivery 

at a health facility, vitamin-A intake, mother took iron tablet, and mother took a calcium supplement. 
26 Since many health care inputs in Bangladesh are provided by health care workers through free-of-cost home 

visits, it is not surprising to observe insignificant effects on these inputs. 
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emphasize the significance of carbohydrate intake in child weight (Kirk et al., 2012; Sondike, 

Copperman, and Jacobson, 2003), while protein consumption in child height (Das et al., 2020; 

Mahfuz et al., 2019). Studies also indicate a higher prevalence of obesity among children facing 

poverty and food insecurity (Drewnowski and Specter, 2004; Griffith, 2022). Consequently, 

child weight may not capture the effect of parental illness shocks. We test this hypothesis in 

this section and present the result in Appendix Table A8.  

The treatment variable is parental illness, and the outcome variable is child weight-for-age z-

score. Columns (1) and (2) present the OLS estimates with and without the covariates, while 

Column (3) presents the ATT estimates of the IPWRA. In all three specifications, the point 

estimates are close to zero and statistically insignificant. This finding suggests that parental 

illness did not have a discernable effect on child weight. As discussed earlier, this result is 

consistent with the notion that households adopt diets sustaining weight amid the financial 

strain posed by parental illness.   

6. Conclusion  

Major illnesses are quite prevalent, unpredictable, and costly events that cause a substantial 

burden to the household in Bangladesh. Substantial medical expenditure combined with 

reduced labor supply arising from the major illness of parents can severely affect children’s 

human capital accumulation. Despite the prevalence and severity of illnesses in developing 

countries, this is one of the first studies to estimate the causal effect of parental illness on child 

health in a low-income context. 

Our findings reveal a significant negative effect of parental illness on child height, akin to the 

impact of major shocks such as droughts or civil wars. Notably, conventional shock mitigation 

strategies such as selling assets and borrowing appear ineffective in safeguarding children from 

these consequences. Moreover, our analysis indicates that eliminating the effects of parental 

illness could potentially narrow the height gap between Bangladeshi children and the global 

average by 3.5%. 

The findings of this study have important policy implications as child growth deprivation has 

a significant negative effect on child survival, cognitive development, and adult-life outcomes 

such as earnings. Furthermore, in revealing the ineffectiveness of informal shock mitigation 

strategies, this study highlights the importance of designing and implementing formal safety 

net mechanisms to protect children.  
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Appendix A: 

 

 

Table A1: Predicting Parents’ ADL Limitation 

 Outcome: ADL Limitation in 2015 (=1 if yes) 

(1) (2) (3) 

Panel A    

Pre-treatment Acute Condition (=1 if yes) 0.010 -0.004 -0.009 

 (0.035) (0.033) (0.035) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 1,019 1,019 1,019 

Panel B    

Pre-treatment Chronic Condition (=1 if yes) -0.021 -0.033 -0.039 

 (0.068) (0.069) (0.065) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 1,019 1,019 1,019 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on Ordinary Least Squares 

(OLS) and Inverse-probability-weighted Regression Adjustment (IPWRA) methods. (b) The explanatory 

variable in Panel A is parents’ acute condition (at the baseline) that equals one if parents had any disease that 

lasted less than a month, and zero otherwise. The explanatory variable in Panel B is the parents’ chronic 

condition (at the baseline) that equals one if parents had any disease that lasted more than 3 months, and zero 

otherwise. (c) The outcome variable is parents’ ADL limitation (in 2015) that equals one if parents have any 

ADL limitation, and zero otherwise. (d) Control variables are household head’s age, head is female, head is 

literate, head is wage-earner, head is self-employed, family size (in log scale), income per capita, asset per 

capita, have a loan, household faced a non-health shock, and other members have ADL limitations. (e) 

Bootstrapped (1000 replications) standard errors are clustered at the household level and presented in 

parentheses. (f) Significance: ***p<0.01, **p<0.05, *p<0.1. 
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Table A2: Effect of Parental Illness on Child Height (Using Alternative Definitions) 

 Low ADL Limitation High ADL Limitation 

(1) (2) (3) (4) (5) (6) 

Parental Illness (=1 if yes) -0.232*** -0.175** -0.166** -0.201 -0.205 -0.190 

 (0.082) (0.082) (0.081) (0.140) (0.127) (0.132) 

Controls No Yes Yes No Yes Yes 

Estimation Approach OLS OLS IPWRA OLS OLS IPWRA 

Observations 1,567 1,567 1,567 1,469 1,469 1,469 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on Ordinary Least Squares 

(OLS) and Inverse-probability-weighted Regression Adjustment (IPWRA) methods. (b) The treatment variable 

in Columns 1-3 is the parental illness that equals one if parents have low ADL limitation, and zero otherwise. 

The treatment variable in Columns 4-6 is the parental illness that equals one if parents have high ADL limitation, 

and zero otherwise. (c) The outcome variable is the children's height-for-age z-score. (d) Control variables are 

household head's age, head is female, head is literate, head is wage-earner, head is self-employed, family size (in 

log scale), income per capita, asset per capita, have a loan, household faced a non-health shock, other members 

have ADL limitations, and child’s age, gender, and birth order. Pre-treatment child height-for-age z-score is also 

included as a control. (e) Bootstrapped (1000 replications) standard errors are clustered at the household level 

and presented in parentheses. (f) Significance: ***p<0.01, **p<0.05, *p<0.1. 
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Table A3: Heterogenous Effect of Parental Illness on Child Height by 

Child Age Groups 

 (1) (2) (3) 

Panel A: Aged 0-24 Months    

Parental Illness (=1 if yes) -0.196 -0.201 -0.213 

 (0.151) (0.148) (0.156) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 701 701 701 

Panel B: Aged 25-59 Months    

Parental Illness (=1 if yes) -0.197** -0.180** -0.179** 

 (0.080) (0.081) (0.081) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 1,039 1,039 1,039 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based 

on Ordinary Least Squares (OLS) and Inverse-probability-weighted Regression 

Adjustment (IPWRA) methods. (b) The treatment variable is the parental illness that 

equals one if parents have any ADL limitation, and zero otherwise. (c) The outcome 

variable is the children’s height-for-age z-score. (d) Panel A and B show the average 

treatment effect on the treated (ATT) for age groups 0-24 and 25-59, respectively. (e) 

Control variables are household head’s age, head is female, head is literate, head is 

wage-earner, head is self-employed, family size (in log scale), income per capita, asset 

per capita, have a loan, household faced a non-health shock, other members have ADL 

limitations, child’s gender, and child’s birth order. Pre-treatment child height-for-age z-

score is also included as a control. (f) Bootstrapped (1000 replications) standard errors 

are clustered at the household level and presented in parentheses. (g) Significance: 

***p<0.01, **p<0.05, *p<0.1. 
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Table A4: Heterogenous Effect of Parental Illness on Child Height 

by Child Gender 

 (1) (2) (3) 

Panel A: Boys    

Parental Illness (=1 if yes) -0.258** -0.254** -0.263** 

 (0.108) (0.105) (0.107) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 921 921 921 

Panel B: Girls    

Parental Illness (=1 if yes) -0.181 -0.120 -0.127 

 (0.113) (0.116) (0.118) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 819 819 819 
Notes: (a) This table presents the average treatment effect on the treated (ATT) 

based on Ordinary Least Squares (OLS) and Inverse-probability-weighted 

Regression Adjustment (IPWRA) methods. (b) The treatment variable is the 

parental illness that equals one if parents have any ADL limitation, and zero 

otherwise. (c) The outcome variable is the children’s height-for-age z-score. (d) 

Panels A and B show the average treatment effect on the treated (ATT) for boys 

and girls, respectively. (e) Control variables are household head’s age, head is 

female, head is literate, head is wage-earner, head is self-employed, family size (in 

log scale), income per capita, asset per capita, have a loan, household faced a non-

health shock, other members have ADL limitations, child’s age, and child’s birth 

order. Pre-treatment child height-for-age z-score is also included as a control. (f) 

Bootstrapped (1000 replications) standard errors are clustered at the household level 

and presented in parentheses. (g) Significance: ***p<0.01, **p<0.05, *p<0.1. 
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Table A5: Heterogenous Effect of Parental Illness on Child Height by 

Child’s Birth Order 

 (1) (2) (3) 

Panel A: First-born    

Parental Illness (=1 if yes) -0.268** -0.214 -0.218* 

 (0.127) (0.132) (0.128) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 560 560 560 

Panel B: Second-born    

Parental Illness (=1 if yes) 0.021 0.047 0.023 

 (0.160) (0.144) (0.144) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 544 544 544 

Panel C: Third or Higher Born    

Parental Illness (=1 if yes) -0.336*** -0.264** -0.233* 

 (0.130) (0.120) (0.128) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 634 634 634 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on 

Ordinary Least Squares (OLS) and Inverse-probability-weighted Regression Adjustment 

(IPWRA) methods. (b) The treatment variable is the parental illness that equals one if 

parents have any ADL limitation, and zero otherwise. (c) The outcome variable is the 

children’s height-for-age z-score. (d) Panels A-C show the average treatment effect on the 

treated (ATT) for first-born, second-born, and third or higher-born children, respectively. 

(e) Control variables are household head’s age, head is female, head is literate, head is 

wage-earner, head is self-employed, family size (in log scale), income per capita, asset per 

capita, have a loan, household faced a non-health shock, other members have ADL 

limitations, child’s age, and child’s gender. Pre-treatment child height-for-age z-score is 

also included as a control. (f) Bootstrapped (1000 replications) standard errors are 

clustered at the household level and presented in parentheses. (g) Significance: ***p<0.01, 

**p<0.05, *p<0.1. 
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Table A6: Parental Input Mechanism of Treatment Effect 

Outcome Variables 

Mean at the 

Baseline 

OLS Without 

Control 

OLS With 

Controls 
IPWRA 

(1) (2) (3) (4) 

Panel A: Health Inputs     

Child is Breastfeeding (=1) 0.969 0.003 0.003 0.002 

  (0.016) (0.016) (0.016) 

Total Vaccination Given 6.204 -0.100 -0.051 0.101 

  (0.255) (0.260) (0.287) 

Number of Antenatal Visits 2.245 -0.070 0.032 0.016 

  (0.193) (0.195) (0.201) 

Delivery at Health Facility (=1) 0.237 -0.018 0.002 0.007 

  (0.040) (0.038) (0.042) 

Child Given Vitamin-A (=1) 0.681 0.001 -0.002 0.001 

  (0.043) (0.042) (0.042) 

Mother Took Iron Tablet (=1) 0.534 -0.010 -0.001 -0.008 

  (0.042) (0.043) (0.044) 

Health Input Index 0.000 -0.039 -0.003 -0.005 

  (0.083) (0.085) (0.088) 

Observations  727 727 727 

Panel B: Childcare Input     

Childcare (Minutes/Day) 86.078 12.417 15.32* 14.986* 

  (8.462) (8.866) (8.755) 

Observations  1,074 1,074 1,074 
Notes: (a) This table presents the average treatment effect on the treated (ATT) based on Ordinary Least 

Squares (OLS) and Inverse-probability-weighted Regression Adjustment (IPWRA) methods. (b) The 

treatment variable is the parental illness that equals one if parents have any ADL limitation, and zero 

otherwise. (c) Each cell of this table comes from a different regression estimation. (d) Health input index is 

the first principal component of the six parental health investment variables (i.e., breastfeeding, vaccination, 

antenatal visits, delivery at a facility, vitamin A, and iron tablet), and normalized it to have zero mean and 

one standard deviation. (e) Childcare data is available only for parents who are household head or spouse 

of the head. (f) Control variables are household head’s age, head is female, head is literate, head is wage-

earner, head is self-employed, family size (in log scale), income per capita, asset per capita, have a loan, 

household faced a non-health shock, and other members have ADL limitations. (g) Child inputs are 

available for children up to 24 months. (h) Bootstrapped (1000 replications) standard errors are clustered at 

the household level and presented in parentheses. (i) Significance: ***p<0.01, **p<0.05, *p<0.1. 
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Table A7: Effect of Illness on Fertility Choice 

 

 

Outcome: Total Number of Children 

(1) (2) (3) 
Parental Illness (=1 if yes) 0.127* -0.037 -0.051 

 (0.070) (0.058) (0.059) 

Mean at the Baseline 2.171 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 1,065 1,065 1,065 
Notes: (a) This table presents the average treatment effect on the treated (ATT) 

based on Ordinary Least Squares (OLS) and Inverse-probability-weighted 

Regression Adjustment (IPWRA) methods. (b) The treatment variable is the 

parental illness that equals one if parents have any ADL limitation, and zero 

otherwise. (c) The outcome variable is the number of children in 2015. (d) Control 

variables are household head’s age, head is female, head is literate, head is wage-

earner, head is self-employed, family size (in log scale), income per capita, asset 

per capita, have a loan, household faced a non-health shock, and other members 

have ADL limitations. (e) Bootstrapped (1000 replications) standard errors are 

clustered at the household level and presented in parentheses. (f) Significance: 

***p<0.01, **p<0.05, *p<0.1. 
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Table A8: Effect of Parental Illness on Child Weight 

 (1) (2) (3) 

Parental Illness (=1 if yes) -0.029 -0.003 -0.012 

 (0.067) (0.060) (0.060) 

Control No Yes Yes 

Estimation Approach OLS OLS IPWRA 

Observations 1,740 1,740 1,740 
Notes: (a) This table presents the average treatment effect on the treated (ATT) 

based on Ordinary Least Squares (OLS) and Inverse-probability-weighted 

Regression Adjustment (IPWRA) methods. (b) The treatment variable is the 

parental illness that equals one if parents have any ADL limitation, and zero 

otherwise. (c) The outcome variable is the children’s weight-for-age z-score. (d) 

Control variables are household head’s age, head is female, head is literate, head 

is wage-earner, head is self-employed, family size (in log scale), income per capita, 

asset per capita, have a loan, household faced a non-health shock, other members 

have ADL limitations, and child’s age, gender, and birth order. Pre-treatment child 

height-for-age z-score is also included as a control. (e) Bootstrapped (1000 

replications) standard errors are clustered at the household level and presented in 

parentheses. (f) Significance: ***p<0.01, **p<0.05, *p<0.1. 
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Appendix B:  

IPWRA Estimator: 

The IPW estimators use weights based on the probability of receiving treatment to create a 

synthetic sample in which the distribution of observed baseline covariates is independent of 

treatment status. The inverse probability weights for the treated units are defined as 
1

𝑃(𝐷𝑖=1|𝑋𝑖)
 

and for the control units as 
1

1−𝑃(𝐷𝑖=1|𝑋𝑖)
. Here, 𝐷 is the treatment indicator that takes 1 if an 

individual 𝑖 is treated and 0 otherwise; X is a multidimensional vector of baseline covariates; 

and 𝑃(𝐷𝑖 = 1|𝑋𝑖) is the probability of receiving treatment (propensity score) defined as 

𝑃(𝐷𝑖 = 1|𝑋𝑖) = 𝐹{ℎ(𝑋𝑖)} = 𝐸(𝐷𝑖|𝑋𝑖) (Rosenbaum and Rubin 1983), where 𝐹{. } a 

cumulative distribution function. On the other hand, RA estimators fit separate regression 

models of the outcome on the baseline covariates for treatment and control units and use the 

contrasts of the averages of predicted outcomes to estimate treatment effects.   

Following Wooldridge (2010), the IPWRA estimator of the average treatment effect on the 

treated (ATT) can be expressed as  

 𝐴𝑇𝑇𝐼𝑃𝑊𝑅𝐴 =
1

𝑛𝑇
∑ 𝐷𝑖[𝑟𝑇

∗(𝑋, 𝛿𝑇
∗ ) − 𝑟𝐶

∗(𝑋, 𝛿𝐶
∗)]𝑛

𝑖=1 , (4) 

where 𝑛𝑇 is the number of treated units, 𝑟𝑇(. ) and 𝑟𝐶(. ) are postulated regression models of 

the outcome on the baseline covariates for treatment (𝑇) and control (𝐶) units, and model 

parameters are 𝛿𝑗 = (𝛼𝑗 , 𝛽𝑗) and 𝑗 = (𝑇, 𝐶). The estimated inverse probability weighted 

parameters for treated and control units (i.e., 𝛿𝑇
∗ = (𝛼𝑇

∗ , 𝛽𝑇
∗ ) and 𝛿𝐶

∗ = (𝛼𝐶
∗ , 𝛽𝐶

∗)) are obtained 

from weighted regression procedures, respectively: 

 
min

𝛼𝑇
∗ ,𝛽𝑇

∗  
∑

𝐷𝑖(𝑦𝑖 − 𝛼𝑇
∗ − 𝑋𝑖𝛽𝑇

∗ )2

�̂�(𝑋𝑖, 𝛾)

𝑛

𝑖=1

 
(5) 

  
min

𝛼𝐶
∗ ,𝛽𝐶

∗  
∑

(1 − 𝐷𝑖)(𝑦𝑖 − 𝛼𝐶
∗ − 𝑋𝑖𝛽𝐶

∗)2

1 − �̂�(𝑋𝑖, 𝛾)

𝑛

𝑖=1

 
(6) 

where �̂�(𝑋𝑖, 𝛾) are the estimated probabilities of receiving treatment (i.e., propensity scores).  

Weighting with propensity scores can be interpreted as removing the correlation between 

treatment and confounders, and regression as removing the direct effect of observed covariates. 
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As a result, combining weighting and regression can lead to additional robustness by removing 

the correlation between the unobserved covariates and reducing the correlation between the 

unobserved and observed confounders (Imbens and Wooldridge 2009). 

Doubly robust method rely on the conditional independence assumption (CIA) (Lechner, 2001; 

2002; Angrist and Pischke, 2008). CIA implies that given a set of pre-treatment observable 

covariates, potential outcomes are independent of treatment assignment (Imbens and Rubin, 

2015). However, to satisfy the CIA, the doubly robust method requires a credible belief that 

there are no unobservable confounders that may bias the impact estimates (Litzow, Pattanayak, 

and Thinley, 2019). In this study context, we argue that the CIA is likely to hold as both the 

pre-treatment outcome and covariates are quite similar at the baseline. 

 


